Integration of graphene oxide in mixed-matrix membranes: balancing membrane performance with fouling resistance

Adam Inurria¹, Pinar Cay Durgun², Douglas Rice¹, Mary Laura Lind² <u>François Perreault¹</u>

> ¹School of Sustainable Engineering and the Built Environment ²School for the Engineering of Matter, Transport and Energy Ira A. Fulton Schools of Engineering Arizona State University

Graphene-based materials

Andre Geim and Konstantin Novoselov 2010 Nobel price in physics

- Highest electron mobility
- Highest thermal conductivity
- High breaking strength
- High optical transparency
- Highest aspect ratio (2630 m² g⁻¹)

Geim and Novoselov. Nature Mater. 20007

Antimicrobial Properties of Graphene

- Contact-mediated antimicrobial activity
- Does not deplete over time
- Does not release toxic compound

Membrane Biofouling

- Reduces permeate flux
- Reduces membrane selectivity
- Reduces membrane lifetime
- Up to 30% increase in operation costs

GO Mixed Matrix Membranes

Embedding graphene oxide sheets into the active layer of RO membranes can form nanochannels to enhance membrane performances.

Yin et al. Desalination 2016, Mi Science 2014

Hypothesis: GO is a multifunctional nanomaterial that can impart antifouling properties and improve the membrane permselectivity

Objective 1: Characterize the antimicrobial, anti-adhesive, and transport properties of GO mixed-matrix membranes of different GO loadings.

Objective 2: Compare MMM with surface-functionalized membranes.

Graphene Oxide synthesis

Inurria et al, in preparation

GO Mixed Matrix Membranes

GO is added to the monomer solution before interfacial polymerization

GO-MMM permselectivity

Limited improvement in membrane performance, and decreasing benefit as GO concentration increases

GO-MMM fouling with BSA-FITC

Membrane fouling by proteins is also reduced when more GO is integrated into the MMM

Inurria et al. In preparation

GO-MMM biocidal properties

Increasing the concentration of GO in the MMM increases the antimicrobial properties of the membrane surface

Inurria et al. In preparation

Two approaches for GO-enabled TFC

Surface functionalization

Nanomaterials is grafted on the surface

- Use small amount of NMs
- Affect only surface properties
- Less stable

Mixed-Matrix Membranes

Nanomaterials is integrated into the polymer matrix

- Provide stronger binding
- Can affect transport properties
- Use more NMs

Membrane Transport Properties

GO modification does not alter the membrane transport properties.

Perreault et al., ES&T Lett. 2014

Antimicrobial Properties

Perreault et al., ES&T Lett. 2014

GO-MMM permselectivity

- At similar antimicrobial effect, GO-MMM does not provide any improvement in membrane separation.
- GO-MMM uses more GO!
- GO-MMM cross-link the GO and reduce leaching.

Conclusions

- Antifouling properties increase with GO loading
- GO improves the membrane permeability at low loadings
- GO may be more performant as an antifouling agent than a permselectivity enhancer
- MMM and surface functionalization offer similar nano-enabled performance
- Are they equal in sustainability?

Acknowledgements

ARIZONA STATE UNIVERSITY

Acknowledgements

Thank you!

Hydrophilic Surface Properties

The hydrated layer of more hydrophilic surfaces can reduce the adhesion of foulants